By Knua Andersen.

The anthoritios of the ['nited staten National Museum have intrusted me with the identification of a series of Horseshoe Bats lately collected hy Dr. W. 1. Abbott in Sumatan, Nias, and Engato. The present paper deals with the Rlimoloplii only. The Kipposietere will be worked out together with the British Masemm material of that genus.

RHINOLOPHUS CIRCE, new species.

 in líle. sumutremmis, hut forearm, metacarpals, and phalanges shortere The subjoined table of measurements" shows the details.

Sknll of the Rh. sumatmones pattern. but on the whole slightly more sendery hoilt. Dentition as in the sumatra representatior: P3 axternal to the tooth-row; P , and $\mathrm{p}_{ \pm}$gromerally in contat, sometimes slightly separated; p" in row.

Typm. Male athet (in aloohol. originally in formalin). Niak. Cob-

cymermens erramimeal.- Eight (6 male adults. 2 femate adults), all from the type locality. Sknlls of t specimens.

RHINOLOPHUS CALYPSO K. Andersen.

The species was hased on two examples collected in Engano by Dr. E. Morligliani, and preserved in the British Museum." 'The fine sorien (\because male adnlts. 4 femals artults, Nov. $17.19(1+$,) ohtamed on the sume

 fortnote (August, 190 (1).
 b, e (Oct. 17, 1905).
island by Doetor Abbot confirm the original diagnosis and deseription, and enables me to point out, with more confidence, the distinguishing
 chiefly in the following respects: The horsesthe is broader, 9.6-10.2 min. (in sumutram, s.e-s.3); the sella brometer, at hase 2.7 (in semu-
 the ears larger.

In one example ρ_{3} is almost quite in row, an individual rariation (or. if preferred, reversion to a more primitive stage) which I hitherto had mot seen in this speries or its dosest allies (summetromms, (c'mminuth(ns), but which certainly was to be expected; in all other individuals examined this small tooth is extermal to the row.

RHINOLOPHUS TRIFOLIATUS NIASENSIS, new subspecies.

Dinumasix. - Similar to the typical Rho trifiniatus, but with longer tail.

Remmiks.-In $1 t$ specimens of Rl, trifolintus, from Lower Siam, the Malay Peninsula, Smatrat, and N. Borneo, the length of the tail varies between 29.3 and 86 mm .: in the only Nias sperimen ohtained ly: Doctor Abbott it measures 40 mm . In other respect. cranial, dental. and external, the Nias form is indistinguishable from the typical form of Rh. trifolictus.

Type-Female adnlt (in alcolool, originally in formalin). Nian, March 15. 1905. Collected by Dr. W. L. Lboott (no. toss). Cat. No. 1413.50. U.S.N.M.

> (EENERAL REXARKS.

From sumatra the following speries of Rhimolophins are known to

From Engano.-R'll. calypser.

 well defined section of the Rh. lepidus gronp. As will be observed from the above, the Nias and Engano representatives of this section are specifieally different from the Sumatra representative, and also specificall!y different inter se. The only other Rhimolophess ats yet recorded from these small islands ($R /$ h, t. mituensix) is so exceedingly like the typical trifoliutros that, for the present at least. I do not think it advisable to separate it ats a distime " -speries;" the small difference in the length of the tail pointed out above may ultimately prove to be indicative of an areage difference only. But the total result, that the three Rhimolophias yet known from Niat and Engano are either specifically or subspecifieally different from the Sumatran species, is worth noticing.

Mectsurmmonts.

Part.	Rh.sumatranus.		Rht. rimer.		Rh. cal!!pier.		Ith. trifoliatus.		
	$2 \times \text { peec }$	mens,	$\begin{aligned} & \text { s sueci } \\ & \text { 1:ki } \end{aligned}$	$\begin{aligned} & \text { mens, } \\ & \text { alls. } \end{aligned}$	$\stackrel{s p e d}{ }$	$\begin{aligned} & \text { mens, } \\ & \text { nlls. } \end{aligned}$		$\begin{aligned} & \text { ypict. } \\ & \text { imens, } \\ & \text { nills. } \end{aligned}$	nituen. $8<8$. Fimale arlult type.
	Minimum.	$\begin{aligned} & \text { Maxi- } \\ & \text { mum. } \end{aligned}$	$\begin{aligned} & \text { Mini- } \\ & \text { m"11. } \end{aligned}$	Maxi- 1num.	Minimunn.	Maxim11m.	Mini- 1111111.	Maximum.	
Ear:	mm.	mm.	mim.	miti.	$m m$.	$m m$.	mm.	m 71 .	$m m$.
Length	18.7	19	16. 7	19	19	21.5	2.2	26	24
Greatest breadth	14.3	14.3	14	1.5	16	17.2	17	19.2	17.5
Breadth of horseshos.	s. 2	- 3.3	8	8.5	9, if	10.2	10.5	12.6	11.7
Forearm........	51	51.2	1.). 2	49	49	52.8	47	0	$5 \% .2$
Third metacarpa!	35.2	36.4	32	34.2	35	38.3	30.5	37	35. 7
III ${ }^{1}$.	15.2	16.3	13	14.s	13.	15.4	17.8	22.:	
111\%.	20	21	17.5	19.3	1s. 2	21.5	25	31	2 S .8
Fourth metacarpal	37.2	3 s	32. 5	$3 \overline{\text { 3. }}$	36	39.3	35.5	12	40
1 ${ }^{1}$.....	11	11.7	8.7	10.2	4.3	10.8	10.5	13	13.1
$1 V^{+}$	13	13.8	11	12	12.2	13.	14 s	20	18
Fifth metucarpa	37.5	38.3	33	35.8	36.9	39.3	37	43.8	11.2
V1.............	12.2	12.7	10	11.2	10.8	11. 5	11	137	13.8
Y	13.7	146	11.7	128	11.7	11	15	197	18.8
Tail	25.2	26.5	21.5	24	23	? ${ }_{6}$	298	36	10
Lower leg	22.5	22.5	19.7	22	20. (232	23. 2	27.8	27.2
Foot..	$10 . \mathrm{s}$	11	10.2	11.5	10 ;	11.5	$11 . \mathrm{s}$	14.5	13.2
*kull:									
Total length.			20.2	21.7	20.9	23	22.6	249	2, 7
Mastold whdth			10	10.2	99	10.7	10.7	11 i	10.3
Width of bram cat			\& 8	9.1	$\therefore \mathrm{x}$	9.7	9.5	103	9.7
Zygomatre width.			10.6	11	10.9	117	11.1	127	11.8
lvidth of nasal swell-									
1mgs....		6. 2	5.7	6	6.2	6.9	6. 1	(1) 5	6
Mandble, length		15.	14.6	$15:$	11.8	16	15.7	17.6	16
Upuer teeth		4,	8. 1	8.6	4. 4	9.9	$\times 7$	9) 7	S.S
Lower teeth.		9.5	8.s	9.2	9	9.4	$9 \cdot 2$	103	9.3

